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1 Introduction

Thanks to recent advances in string theory, the thermodynamic properties of black holes

can be microscopically derived in a variety of contexts with remarkable precision [1]. This

has led to new insights into the quantum structure of black holes as well as string theory

itself. The macroscopic-microscopic correspondence has developed to the extent that

semiclassical black holes have become a powerful tool for analyzing the quantum theories

which describe their dynamics [2, 3, 4, 5].

In this paper we will compute and compare the macroscopic and microscopic entropies

of extremal black holes arising in an M-theory compactification to four dimensions on M×

S1, where M is a Calabi-Yau threefold, so that the unbroken spacetime supersymmetry

is precisely N = 2. Some special cases were considered in [6] and a heuristic explanation

for the more general case was attempted in [7, 8].

Several new features arise in the computation. The basic microscopic object which

enters is the still-mysterious M-theory fivebrane, aspects of whose world-volume field

theory enter the analysis. The resulting geometric picture is quite interesting, since it

maps the black hole degrees of freedom to the different ways of deforming a “foam” of

fivebranes. We are able to go beyond the tree-level Bekenstein-Hawking entropy and

successfully compute and compare the one-loop corrections. The macroscopic correction

at one loop is related to the entropy arising from entanglement of the quantum state inside

and outside the horizon, while at the microscopic level it is a subleading contribution to
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the central charge of a two-dimensional conformal field theory. A curious feature of the

analysis is that we never need to use string theory itself: everything follows from the

properties of M-theory fivebranes in curved spaces. Indeed with 20/20 hindsight, this

paper might have been written years ago following the discovery of eleven-dimensional

supergravity, Calabi-Yau compactification, and the fivebrane as a spacetime soliton.

This paper is organized as follows. In section 2.1 we review the macroscopic entropy

formula, and the explicit solution for general nonzero S1 momentum, twobrane and five-

brane charges. In section 2.2 we compute the leading one loop correction which arises

from the R4 term in eleven-dimensional M-theory. In section 3 we describe the (0, 4)

sigma model that counts the BPS states. In 3.1 we compute the central charge in terms

of the homology class of the four cycle P . In 3.2 we relate antisymmetric tensor expecta-

tion values to twobrane charges and show that this affects the entropy via a shift in the

effective S1 momentum. In section 4 we briefly raise - but do not resolve - the issue of α′

corrections in the string theory regime.

2 Macroscopic entropy

2.1 The area formula

In this subsection, we review the semiclassical area-entropy formula for an N = 2, d = 4

extremal black hole characterized by magnetic and electric charges (pΛ, qΛ). The asymp-

totic values of the vector moduli ZΛ = XΛ/X0, Λ = 0, 1, . . . , nV , in the black hole solution

are arbitrary. These moduli couple to the electromagnetic fields and accordingly vary as

a function of the radius. At the horizon they approach a fixed point whose location in

the moduli space depends only on the charges [9, 10]. The locations of these fixed points

can be found by looking for supersymmetric solutions with constant moduli. The general

formula is [11, 9]1

pΛ = Re[CXΛ] , (2.1)

qΛ = Re[CFΛ] , (2.2)

where FΛ = ∂LF are the holomorphic periods. The 2nv + 2 real equations (2.1) and

(2.2) determine the nv +2 complex quantities (C,XΛ) up to Kahler transformations. The

Kahler potential K is given by

XΛF̄Λ − X̄
ΛFΛ = ie−K . (2.3)

Given the horizon values of the moduli determined by (2.1) and (2.2) the Bekenstein-

Hawking entropy is

SBH =
1

4
Area =

πiCC̄

4
(XΛF̄Λ − X̄

ΛFΛ) . (2.4)

1We have redefined C, X and F by factors of eK/2 relative to [11] so that (XΛ, FΛ) is a holomorphic

section.
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For M-theory compactified on M × S1, where M is a Calabi-Yau threefold, the pre-

potential is

F (X) = DABC

XAXBXC

X0
, (2.5)

where A,B = 1, ..nV . The intersection numbers 6DABC are

6DABC ≡
∫
M
αA ∧ αB ∧ αC , (2.6)

where the αA are an integral basis for H2(M ; Z).

The fixed point equations (2.1), (2.2) have been solved for a general prepotential of

the form (2.5) with the restriction p0 = 0 [12, 13]. The fixed points are given by

CX0 = i

√
D

q̂0

,

CXA = pA +
i

6

√
D

q̂0

DABqB ,

(2.7)

where
D ≡ DABCp

ApBpC ,

q̂0 ≡ q0 +
1

12
DABqAqB ,

DAB ≡ DABCp
C ,

DABDBC = δAC .

(2.8)

The entropy then follows from (2.4) and (2.5) as

S = 2π
√
Dq̂0 . (2.9)

In order that the long wavelength approximation to M-theory can be trusted, the

volume VM of M as well as the radius R of the S1 should both be large in eleven-

dimensional Planck units. VM is a hypermultiplet scalar which is a freely adjustable

constant throughout the black hole solution. R3VM is a scalar in a vector multiplet whose

value at the horizon is proportional to
√
q̂3

0/D. Hence the validity of the semiclassical M-

theory computation requires q̂3
0 � D. The validity of the long wavelength approximation

requires not just that the total volume of M should be large at the horizon, but that the

volume of any two-cycle in M should be large there. It follows from (2.7) that the Kahler

class at the horizon is proportional to P ≡ pAαA. Hence we require that P lies inside the

Kahler cone, a restriction that will be extensively used later.

The above conditions were necessary to ensure that we can derive the effective four

dimensional theory by simple Kaluza-Klein reduction. Demanding that the black hole

supergravity solution is weakly curved further requires

D � VM . (2.10)
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2.2 Macroscopic loop corrections

The macroscopic entropy (2.9) was derived from the classical leading low-energy effective

d = 4, N = 2 supergravity action. This action has corrections from higher-dimension

operators. Corrections to the underlying eleven-dimensional action are a power series in

the Planck length while corrections to the four dimensional action also involve R and VM .

In general there is no known systematic procedure for computing these corrections in the

M-theory regime of large R and large VM . However, the correction we are after arises

from a special term whose coefficient can be determined. This is the R2 correction

S1 =
1

96π

∫
c2AImZAR ∧ ∗R , (2.11)

where

ZA(x) =
XA

X0
, (2.12)

are moduli fields and

c2A ≡
∫
M
c2(TM) ∧ αA , (2.13)

with c2 the second Chern class of M . This term has a topological origin [14, 15, 16] and

descends from the R4 term in d = 11 [16]. In string perturbation theory – that is, in

an expansion in 1/VM – this R4 term has been computed as a one loop correction [17].

It cannot be renormalized at higher loops because it is related to anomaly cancellation

[18, 19].

In order to determine the effect of (2.11) on the entropy we first consider the special

case that the moduli fields take their constant fixed point values throughout the black

hole solution. It then follows from (2.7) that ImZA = −pA
√
q̂0/D. Using the fact that

the Euclidean black hole solution is R2 × S2 and has Euler character 2, (2.11) is then

S1 = −c2Ap
Aπ

6

√
q̂0

D
. (2.14)

This correction to the effective action is a correction to − logZ = βF , so the correction

to the entropy will be δS = δ logZ−β∂βδ logZ. Since the correction (2.11) is topological

(proportional to the Euler character), it will be independent of the temperature. The

correction to the entropy is then

∆S = −S1 = c2Ap
Aπ

6

√
q̂0

D
. (2.15)

Note that unlike the leading term (2.9), this term is of order zero, rather than quadratic

in the charges. It will, however, be large in the case we are considering where q0 � D1/3.

In general, the value of ZA at infinity is arbitrary, and ZA will vary over the black hole

solution. The microscopic entropy is a function only of the charges and is independent

of the asymptotic values of the the moduli, because the number of BPS states cannot

vary smoothly with the moduli. Hence the macroscopic entropy should also be indepen-

dent of the moduli. The macroscopic origin of this in the spacetime solutions has been
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understood for tree level entropy in terms of fixed points as described above. We do not

understand the macroscopic mechanism for moduli-independence of the one loop correc-

tions for the general case when the moduli fields are not taken to be at their fixed points.

This will require a detailed knowledge of the one loop corrections and supersymmetry

transformation laws.

The one-loop correction to the effective action of course involves more terms than just

(2.11). Some of these involve gauge fields which are nonzero for the black hole solution,

and in principle might further correct the entropy. However the topological nature of

(2.11) suggests that it should play a dominant role, and we shall indeed find that the

induced correction to the entropy agrees with the microscopic prediction.2

3 Microscopic entropy

At the microscopic level, configurations with charges (0, pA, q0, qA) are obtained from a

fivebrane wrapping the five-cycle P × S1 and carrying total momentum q0 about the S1.

Here P is a four-cycle in M . Its cohomology class [P ] ∈ H2(M,Z) can be expanded

as [P ] =
∑
A p

AΣA where the pA are charges and ΣA are a basis of H2(M,Z); one can

consider the ΣA to be the cohomology classes of a basis of four-cycles in M . Nonzero qA
charge arises, as we discuss later, from exciting the self-dual antisymmetric tensor field

on the fivebrane. Nonzero p0 - not considered here - would arise from a Kaluza-Klein

monopole on the S1.

Supersymmetry requires that P should be holomorphic; it is of complex codimension

one in M . We will need to work out the low energy effective field theory obtained by

wrapping a fivebrane on P×S1. As explained at the end of section 2.1, [P ] is proportional

to the effective Kahler class of M near the black hole horizon, and hence long-wavelength

M-theory is a good description only if [P ] is inside the Kahler cone in H2(M,Z), so

that M is smooth at the horizon, and moreover is large. These conditions mean that

P is a “very ample divisor” in the language of algebraic geometry, and lead to many

simplifications. One important simplification is that we can assume that P is smooth; in

the moduli space of P ’s, one will encounter singularities at special points, but the generic

P of given cohomology class is smooth. The fact that P is generically smooth means that

we do not need to understand the behavior of M-theory with coincident or intersecting

fivebranes; everywhere there is locally a single, isolated, smooth fivebrane.

Another important consequence of the fact that P is very ample is that there is a

general method to describe the moduli of P . Given any complex divisor P in a complex

manifold M , there is a holomorphic line bundle L and a holomorphic section s of L

such that s vanishes precisely along P . Existence of such an s means that c1(L) = [P ].

Conversely, any holomorphic section s′ of L vanishes along a divisor P ′ whose cohomology

class equals that of P . s′ is uniquely determined by P ′ up to scaling by a complex constant

(s′ → λs′ with λ ∈ C∗). So the moduli spaceM of divisors that are cohomologous to P is

2There are also subleading logarithmic corrections [20] not considered here.
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a complex projective space that is obtained by projectivizing the vector space H0(M,L).

This statement holds for any divisor P in a complex manifold. For a general P , there

would be no nice formula for the dimension of H0(M,L). There is, however, a nice index

or Riemann-Roch formula for the alternating sum w =
∑dimM
i=0 (−1)idimH i(M,L). In

fact,

w =
∫
M
eP Td(M) . (3.1)

Here Td(M) is the Todd class of M . Also, we have used the fact that c1(L) = [P ], and

we henceforth sometimes write simply P instead of [P ] for ease of reading the formulas.

For a divisor in a Calabi-Yau threefold, one has Td(M) = 1 + c2(M)/12, with c2(M) the

second Chern class. So the index formula can be evaluated to give

w =
∫
M

(
P 3

6
+

1

12
Pc2(M)

)
. (3.2)

In (3.2), there is no requirement of ampleness. But for P very ample, dimH i(M,L) =

0 when i > 0. So in this case, the definition of w reduces to w = dimH0(M,L). The

quantity w in (3.2) is accordingly for very ample P the number of complex parameters

required to determine a holomorphic section s of L. Because of the equivalence under

s→ λs, the number of complex moduli of P is w− 1, so the number of real moduli of P

is 2w − 2 or

dp =
∫
M

(
1

3
P 3 +

1

6
Pc2(M))− 2 . (3.3)

These moduli can vary as we move along the S1. We take the radius R of the S1

much bigger than the typical size of the Calabi Yau space, in the sense that R6 � VM .

The low energy dynamics is then described by a two-dimensional sigma model on the S1

as in [21]. This sigma model has (0, 4) supersymmetry. The chirality of the sigma model

descends from the (0, 2) chirality of the field theory on the fivebrane. This sigma model

contains the moduli of the four-cycle, as well as scalar fields corresponding to expectation

values of the two index antisymmetric tensor potential that lives on the fivebrane world

volume. As in [21], the microscopic entropy is given by the logarithm of the number of left-

moving excitations with total momentum q0. For large q0 (q0 � cL), this asymptotically

approaches

Smicro = 2π

√
cLq̃0

6
, (3.4)

where cL is the left-moving (non-supersymmetric) central charge and q̃0 is the momentum

available to freely distribute among the left-moving oscillators.

The above discussion makes sense when the fivebranes are far apart from each other

so that we can neglect their gravitational effects, and also when they are embedded in a

large space where we keep just the low energy description of the fivebrane. This requires

that D � VM , which is just the opposite of the condition (2.10) for the validity of the

supergravity analysis. Since VM is in a hyper multiplet, we can presumably interpolate

between these two regimes without changing the number of BPS states. In order to reduce
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the dynamics to the sigma model we needed that R6 � VM , which will require changing

the value of a vector multiplet. We are assuming throughout that there are no jumping

phenomena (or that they can be neglected) when we perform this change.

3.1 Computing cL

In this section we compute the microscopic entropy for the case of large q0, so that we

may approximate q0 = q̃0 = q̂0. The shift in q0 will be considered in the next section.

The results will reproduce for this case the leading entropy (2.9) as well as the one-loop

semiclassical correction (2.15).

One contribution to cL comes from massless fields that arise from fluctuations in

the moduli of P . Such fields propagate as left- and right-movers on the S1, and the left-

movers contribute to cL. There are no fermions contributing to cL for the following reason.

Fermions arise from (0, i) forms on P . They are right-moving for i even and left-moving

for i odd. Hence the number of left-moving fermions is b1(P ), the first Betti number of P .

For P a very ample divisor in a Kahler manifold M , the Lefschetz hyperplane theorem

says that b1(P ) = b1(M). For M a complex threefold whose holonomy is SU(3) (and not

a subgroup), b1(M) = 0, and so there are no left-moving fermions.3

The other bosonic contribution to cL comes from the the rank two antisymmetric

tensor potential b that propagates on the fivebrane world-volume. To determine its di-

mensional reduction to S1, it is important that the three-form field strength h = db is

self-dual. The reduction of b to S1 gives b+
2 right-moving massless scalars on S1 and

b−2 left-moving ones, where b+
2 and b−2 are the dimensions of the space of self-dual and

anti-self-dual two-forms on P . (The reduction of b does not give two-dimensional gauge

fields, since the first Betti number b1(P ) vanishes for a reason given in the next footnote.)

The Euler characteristic χ and signature σ of P can be expressed in terms of b±2 by

σ = b+
2 − b

−
2 and χ = 2 + b+

2 + b−2 .4 χ and σ can be computed as follows. It suffices to

know the Chern classes c1(P ) and c2(P ), since for a two-dimensional complex manifold

P one has

χ =
∫
P
c2(P ) ,

σ = −2
3
χ + 1

3

∫
P c1(P )2 .

(3.5)

The Chern classes of P can be computed in terms of the Chern classes of M and the

cohomology class [P ]. Let TP and TM be the tangent bundles to P and M , so that by

definition ci(P ) = ci(TP ), ci(M) = ci(TM). Let TM |P , L|P denote the restrictions of

3If the holonomy of M is a proper subgroup of SU(3) – in other words, if M is a six-torus or a two-

torus times K3 – then b1(M) 6= 0, and there would be left moving fermions. For such M , the unbroken

supersymmetry is greater than the N = 2 assumed in the present paper, and a few other details of the

exposition would also be modified.
4In general, for a four-manifold P , χ(P ) = 2−2b1(P )+ b+2 + b−2 , where b1(P ) is the first Betti number

of P , but we assume here that M is a complex threefold whose holonomy is SU(3) (and not a subgroup).

In this case, as discussed above, b1(M) = b1(P ) = 0, so the formula for the Euler characteristic of P

reduces to χ = 2 + b+2 + b−2 .
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TM and L to P . There is an exact sequence

0→ TP → TM |P → L|P → 0 , (3.6)

which expresses the fact that the restriction of L to P can be understood as the normal

bundle to P in M .5 Hence, if c = 1 + c1 + c2 + . . . is the total Chern class, we have

c(TM |P ) = c(TP )c(L|P ) . (3.7)

Because M is Calabi-Yau, we have c1(TM) = 0, and hence c(TM |P ) = 1 + c2(M) + . . ..

So (3.7) gives the relations c1(P ) = −c1(L) = −[P ], and c2(P ) = c2(M) + [P ]2.6 With

these relations, we can use (3.5) to express χ and σ in terms of
∫
P c2(M) and

∫
P [P ]2.

It is now convenient to note that if A is any cohomology class on M , whose restriction

to P we write also as A, then
∫
P A =

∫
M P · A. Using this principle, we can write χ(P )

and σ(P ) in terms of integrals on M . Writing simply P instead of [P ], we get

χ =
∫
P
c2(P )

=
∫
P

(c2(M) + c2
1(P ))

=
∫
M

(Pc2(M) + P 3) ,

(3.8)

σ = −2
3
χ+ 1

3

∫
P c1(P )2

= −
∫
M(1

3
P 3 + 2

3
Pc2(TM)) .

(3.9)

Expressing b±2 in terms of χ and σ by b±2 = 1
2
(χ± σ)− 1 yields

b−2 =
∫
M

(
2

3
P 3 +

5

6
Pc2(TM)

)
− 1 , (3.10)

b+
2 =

∫
M

(
1

3
P 3 +

1

6
Pc2(TM))− 1 . (3.11)

The total number of left- and right-moving massless bosons is NB
L = dp + b−2 + 3,

NB
R = dp + b+

2 + 3, where in each case +3 is the contribution of three translational zero

modes. So in terms of

c2 · P =
∫
M
Pc2(TM) , (3.12)

5For instance, if s is the section of L that vanishes along P , and s′ is any other section, then the

vanishing of s+ εs′ defines a divisor Pε that is homologous to P . To first order in ε, the ε-dependence of

Pε describes a first order displacement of P which can be understood as a section of its normal bundle;

so the section s′ of L, restricted to P , can be interpreted as a section of the normal bundle to P in M .
6Since ci(P ) is defined as a cohomology class of P , all classes appearing on the right hand side of

these formulas should be restricted to P . We do not indicate this in the notation, and in any event will

momentarily extend the classes away from P .
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and

D =
1

6

∫
M
P 3 , (3.13)

we get

cL = NB
L = 6D + c2 · P , (3.14)

cR = NB
R +

1

2
NF
R = 6D +

1

2
c2 · P . (3.15)

Here we have included in cR also 2D+ c2 ·P/6 complex fermions built out of (0, 2) forms

as required by supersymmetry (there are no left moving fermions since b1 = 0). Note that

in comparing to section 2, D should be identified with the quantity of the same name

introduced in equation (2.8). The pA in (2.8) are the expansion coefficients of [P ] in a

basis of classes ΣA; thus [P ] =
∑
A p

AΣA. In the basis ΣA, the intersection form of M is

given by 6DABC = ΣA ∩ ΣB ∩ ΣC .

The microscopic entropy for large q0 is then from (3.4)

Smicro = 2π

√
(6D + c2 · P )q0

6
. (3.16)

To compare with (2.9) we should expand in powers of 1/D. One finds

Smicro = 2π
√
Dq0 + c2 · P

π

6

√
q0

D
+ . . . (3.17)

This agrees with the Bekenstein-Hawking result (2.9) plus the one loop correction (2.15).

It would be interesting to macroscopically reproduce the full series of corrections obtained

microscopically in (3.16).

The computation given here for Calabi-Yau spaces can be repeated for K3×T 2 or T 6

with only minor differences. Again the generic fivebrane configuration is described by a

smooth holomorphic map. At special points in the moduli space it degenerates into a set

of fivebranes with D intersections. We can view the moduli as coming from “blow-up”

modes associated to each intersection. In all cases we find that the sigma model is (0,4)

if D is nonzero. For the K3× T 2 or T 6 case there are additional modes coming from b1,

which are subleading for large D.

3.2 Membrane charge

In this section we consider the effect of endowing our black hole with nonzero membrane

charge qA. Membrane charge is actually carried in the effective two-dimensional theory

by the massless scalars that arise from dimensional reduction of the chiral two-form b;

they were counted in section 3.1. The reason for this is that membrane charge is the flux

of the self-dual three-form h = db over cycles of the form S1 × Σ, with Σ a two-cycle in

P . The fluxes for various Σ reduce in terms of the low energy physics on R × S1 to the

winding numbers around S1 of the various massless scalars that arise from reduction of b.

It can be seen that all membrane charges arise in this fashion if P is in the Kahler cone.
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Thus, the membrane charge is a vector in the Narain lattice of the massless scalars.

Now, actually there are two lattices of interest. The obvious lattice is Γ = H2(P,Z). It

has a sublattice ΓM = H2(M,Z), consisting of two-dimensional classes on P that can

be extended over M .7 The lattice Γ has signature (b+
2 , b

−
2 ), with b±2 computed in section

3.1. The lattice ΓM has signature (1, b2(M)−1). The last statement is proved as follows.

Since M has holonomy SU(3) (and not a proper subgroup of SU(3)), H2,0(M) = 0.

Hence H2(M,R) is generated by differential forms of type (1,1), and the sublattice ΓM is

entirely of type (1,1). By the Hodge index theorem, H1,1(P ) has a self-dual part that is

one-dimensional, generated by [P ] itself, so the positive signature part of ΓM is at most

one-dimensional. Since [P ] does extend over M , it is a vector in ΓM , and hence ΓM has

signature (1, b2(M)− 1) with the positive signature subspace being generated by [P ].

At first sight it seems that, for a fivebrane wrapped on S1 ×P , the membrane charge

should be a vector in Γ. Actually, we should take it to be a vector in the sublattice ΓM .

There are two closely related reasons for this.

(1) From the point of view of the underlying M-theory on R4×S1×M , the conserved

membrane charges are vectors in ΓM , not in the larger lattice Γ. Thus, in discussing the

macroscopic entropy in section 2, the membrane charge was a vector in ΓM . We should

expect that any fivebrane state, with a charge vector that initially is in Γ but not in ΓM ,

can decay to a state with charge vector in ΓM . (In this decay, the inner product of the

charge vector with any vector in ΓM will be conserved.)

(2) To build a BPS state, the membrane charge vector must be in ΓM . In fact,

the membrane charge vector must be integral, and the BPS condition requires that the

membrane charge should be a sum of a left-moving vector and a multiple of P . This

important statement will be justified at the end of the present section. Because ΓM
has signature (1, b2(M) − 1) with the plus part generated by [P ], a charge vector in ΓM
automatically obeys the necessary conditions for a BPS state. Generically, a vector not

in ΓM would not obey those conditions. The reason for the last assertion is that for P a

very ample divisor in M , one has H2,0(P ) 6= 0,8 which generically gives an obstruction to

the existence of vectors not in ΓM and obeying the desired conditions for a BPS state.

In the macroscopic discussion of section 2, the effect of such nonzero membrane charges

on the macroscopic entropy is simply to shift q0 in equation (2.9). From a microscopic

point of view, this happens because membrane charge – in other words, a nonzero winding

number of the scalars – shifts the ground state energy and momentum of the effective

two-dimensional theory. This can be seen as follows.

We recall that the conformal field theory on R×S1 has one chiral boson, arising from

reduction of the self-dual antisymmetric tensor b on the fivebrane, for every harmonic

7ΓM is a sublattice of Γ because for P a very ample divisor in M , the restriction map from H2(M,Z)

to H2(P,Z) is injective. This is so because an ample divisor P has a positive intersection with every

divisor D in M ; in fact, the triple intersection number D ∩ P ∩ P is positive, being the volume of D in

a Kahler metric whose Kahler class is P .
8In fact, by the Hodge index theorem, b+2 = 1 + 2 dimH2,0(P ). The formula for b+2 in section 3.1 thus

gives a formula for dimH2,0(P ).
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two-form on P . Since we wish to consider the case of a membrane charge vector in ΓM ,

we focus on contributions from two-forms αA on P which arise as the restriction to P

of closed two-forms αA on M (we denote them with the same letter). For simplicity we

assume that the Kahler class J of M is a multiple of P . This need not be the case in

general, but the index of BPS states does not depend on the choice of J , so it suffices to

consider this case. In any event, we have seen in section 2 that at the black hole horizon,

J is a multiple of P .

We obtain two-dimensional fields φA by an ansatz b =
∑
A φ

AαA for the two-form

potential. The fields φA are constrained by self-duality of the three-form field strength h

in R× S1 × P . In fact,

PA
∓B∂±φ

B = 0 , (3.18)

where the projection operators P± are

PA
±B = 1

2
(δAB ±

1

6
DACgCB) , (3.19)

with

gAB =
∫
P
αA ∧ ∗αB = −6DAB +

12DACp
CDBEp

E

D
, (3.20)

and ∗ is the Hodge dual in P .

Let kA be the winding numbers of the φA, and let kA± = PA
±Bk

B. For nonzero k there

is a zero-mode contribution to the S1 momentum given by

∆q0

R
=
∫
S1
dσ(T−− − T++) = 2π2RgAB(kA+k

B
+ − k

A
−k

B
−) = −12π2RDABk

AkB . (3.21)

We will now demonstrate more precisely that a state with nonzero momentum kA has

a nonzero flux of h and therefore caries membrane charge. The three-form potential A(3)

of the low energy eleven-dimensional supergravity has couplings both to the world volume

of a membrane, which we will take to be R×Q, where R is parametrized by time and Q

is a two-surface in space, and to the five-brane worldvolume R× S1 × P . The couplings

are ∫
R×Q

A(3) +
∫
R×S1×P

h ∧A(3) . (3.22)

The three form gauge potential gives rise to 3+1-dimensional U(1) gauge fields AAµ , µ =

0, ..3 via the decomposition

A(3) = AAµ dx
µ ∧ αA . (3.23)

Membrane charge acts as a source for these gauge fields. When k is nonzero, h becomes

h = αAk
A
+ ∧ dx

+ + αAk
A
− ∧ dx

− . (3.24)

It follows from (3.22) and the relation∫
P
αA ∧ αB = 6DAB (3.25)
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that the effect of nonzero h is to induce a membrane charge

qA = 12πRDAB(kB+ − k
B
−) . (3.26)

Hence one finds that the total leftmoving S1 momentum is

q0 = q̂0 −
1

12
DABqAqB , (3.27)

where q̂0 is the momentum carried by non-zero modes of the cL ≈ 6D conformal field

theory and we have used kA+k
B
−DAB = 0. Since the entropy counts the number of ways of

distributing the momentum within these modes, the microscopic entropy is

S = 2π
√
Dq̂0 , (3.28)

in full agreement with (2.9), including the coefficient and the sign.

We are interested in supersymmetric BPS states and so we still need to check that the

momenta do not break supersymmetry. All BPS states have the same number of super-

symmetries as the k = 0 ground state. Supersymmetry is realized by the right movers, so

naively supersymmetry is broken whenever the right-moving momentum is nonzero. How-

ever, there is a crucial subtlety here. In fact, if the right-moving momentum is nonzero

but is a multiple of [P ], then all the linearly realized supersymmetries of the vacuum

are broken but an equal number of unbroken supersymmetries reappear as combinations

of the original linear and nonlinear supersymmetries, as follows. The two-form b on the

membrane world-volume has one distinguished right-moving mode coming from b ∼ [P ].

Let kR be the momentum of this mode. This mode is paired together with the three

translational zero modes and the four goldstinos ψ in a (0, 4) supermultiplet. For nonzero

kR (but no spacetime momentum), the ψ transform under the linear supersymmetries as

δψ = kRγ
4εlin , (3.29)

signalling the breaking of the original supersymmetries. However as goldstinos they also

transform under the nonlinear supersymmetries as

δψ = εnlin . (3.30)

Hence linear combinations of transformations obeying

εnlin = −kRγ
4εlin (3.31)

provide four unbroken supersymmetries for generic values of kR, and BPS states exist for

all kR. Such mixing of linear and nonlinear supersymmetries in describing BPS states is

of course familiar in many other aspects of brane physics, for instance in matrix theory.

The other right-moving scalars of the theory are not paired with the goldstinos in this

way. So their momenta must vanish in a BPS state. Hence, the BPS condition asserts

not that the right-moving charge is zero but that it is a multiple of [P ], as we asserted

near the beginning of section 3.2 in explaining why the charge vector should lie in ΓM .
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4 α′ corrections

In the preceding, we have considered corrections to the entropy which correspond to string

loops in the type IIA picture. These come from higher dimension operators, and the

leading correction is suppressed by a factor of D−2/3. There are also α′ corrections which

arise at string tree level. These correct the prepotential which determines the leading

low-energy action, and are suppressed by inverse powers of the string frame volume of M ,

Vstr = R3VM . Corrections arise at three-loops, four-loops and nonperturbatively in the

string sigma model [22]. The leading three-loop correction to the entropy is supressed by

a factor D1/3/q0. Consistency of the present analysis requires that this be smaller than

the string loop suppression, or q0 � D. This is the same as the condition q0 � cL needed

in the microscopic analysis.

It would be of interest to go beyond the present analysis and understand the leading

α′ correction, which amounts to an effective shift of c2 · P/24 to q0. This was interpreted

in the string theory picture in [8] as arising from the anomalous zerobrane charge of a

fourbrane in curved space [23, 24]. In the M-theory picture it has the right form to

arise from the ground state energy of the left-moving chiral bosons. Because there are

cL = 6D + c2 · P such bosons, this is potentially given by (6D + c2 · P )/24 rather than

c2 · P/24. In order to compute this shift one must know the boundary conditions. For

reasons discussed in [25], these scalars can in general change by additive constants in going

around S1, but from [25] it follows that this effect alone can not shift q0 appropriately.

Indeed independent analyses using anomaly inflow [26, 27] have recently found an extra

shift proportional to D. It would be interesting to understand this in the context of the

semiclassical black hole entropy formula.
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A Normalization of the charge quantization conditions

Let us fix the normalization of the three form potential A(3) so that its coupling to the

membrane is ∫
Σ3

A(3) , (A.1)

and normalize the self-dual field strength h so that its coupling on the fivebrane world-

volume to the three form potential is ∫
Σ6

A(3) ∧ h . (A.2)
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The stress tensor on the fivebrane will contain a contribution from h

Tµν = Bhµρσh
ρσ
ν , (A.3)

where B is a constant to be determined. (Notice that hµρσh
µρσ = 0 due to the self-duality

condition, so T µµ = 0 as required for conformal invariance). In order to determine B, we

consider the case of the torus and use the known BPS mass formula. Consider a bound

state of a membrane and a fivebrane represented as an h flux in the fivebrane. The

membrane is along 12 and the fivebrane along 12345. The mass of this bound state is

M =
√
M2

5 +M2
2 ∼M5 +

1

2

R1R2

(R3R4R5)
, (A.4)

where we used the relation T 2
2 /T5 = 2π obtained in [28]. We write A(3) = Aµdx

µβ12dx
1dx2

where
∫
T12

β12 = 1. In this case the coupling (A.2) becomes∫
A0 dt h345(2π)3R3R4R5 , (A.5)

where the relation between forms and components is h = 1
6
hµνρdx

µdxνdxρ. If h induces

one unit of charge we should have

h345 =
1

(2π)3R3R4R5
. (A.6)

This can be seen by comparing (A.5) to (A.1). Inserting (A.6) in (A.3) and comparing it

to (A.4) we find that

B =
π

2
. (A.7)

Now we return to our case with a generic Calabi Yau and write

A(3) = AAµdx
µαA , (A.8)

where the integral of αA over the corresponding cycle is normalized to one. Using the

formula (3.24) for h and the coupling (3.22) with (A.8) we conclude that the membrane

charge is (3.26), using kA± ≡ ∂±φ
A. Evaluating the momentum is straightforward from

(A.3). Defining x± = t ± x11 we have T01 = T++ − T−−. Using this relation and (3.24)

we finally obtain (3.21).
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